虚函数:多态的实现原理

虚函数:多态的实现原理

一.序言 C++ 中的虚函数的作用主要是实现了多态的机制。关于多态,说白了就是用父类型别的指针指向其子类的实例,然后通过父类的指针调用实际子类的成员函数(当然引用也可以达到该目的,引用也是指针的另一种变种)。这种技 术可以让父类的指针有“多种形态”,这是一种泛型技术。所谓泛型技术,说白了就是试图使用不变的代码来实现可变的算法。比如:模板技术,RTTI技术,虚 函数技术,要么是试图做到在编译时决议,要么试图做到运行时决议。 我们从虚函数的实现机制上面为大家 做一个清晰的剖析。 二.分析 1.虚函数表 (1)对C++ 了解的人都应该知道虚函数(Virtual Function)是通过一张虚函数表(Virtual Table)来实现的。简称为V-Table。 在这个表中,主要是一个类的虚函数的地址表,这张表解决了继承、覆盖的问题,保证其容真实反应实际的函数。这样,在有虚函数的类的实例中这个表被分配在了 这个实例的内存中,所以,当我们用父类的指针来操作一个子类的时候,这张虚函数表就显得由为重要了,它就像一个地图一样,指明了实际所应该调用的函数。 这里我们着重看一下这张虚函数表。在C++的标准规格说明书中说到,编译器必需要保证虚函数表的指针存在于对象实例中最前面的位置(这是 为了保证正确取到虚函数的偏移量)。 这意味着我们通过对象实例的地址得到这张虚函数表,然后就可以遍历其中函数指针,并调用相应的函数。 假设有这样的一个类:

class Base

{

public:

virtual void f (){cout<<"Base::f()"<

virtual void g() {cout<<"Base::g()"<

virtual void h() {cout<<"Base::h()"<

};

按照上面的说法,我们可以通过Base的实例来得到虚函数表。 下面是实际例程:

typedef void(*Fun)(void);

Base b;

Fun pFun = NULL;

cout << "虚函数表地址:" << (int*)(&b) <

cout << "虚函数表 — 第一个函数地址:" << (int*)*(int*)(&b) <

pFun = (Fun)*((int*)*(int*)(&b));

pFun();

通过这个示例,我们可以看到,我们可以通过强行把&b转成int ,取得虚函数表的地址,然后,再次取址就可以得到第一个虚函数的地址了,也就是Base::f(),这在上面的程序中得到了验证(把int 强制转成了函数指针)。通过这个示例,我们也就可以知道如果要调用Base::g()和Base::h(),其代码如下:

(Fun)*((int*)*(int*)(&b)+0); // Base::f()

(Fun)*((int*)*(int*)(&b)+1); // Base::g()

(Fun)*((int*)*(int*)(&b)+2); // Base::h()

以上实例如图所示:

注意:在上面这个图中,在虚函数表的最后多加了一个结点,这是虚函数表的结束结点,就像字符串的结束符“\0”一样,其标志了虚函数表的 结束。这个结束标志的值在不同的编译器下是不同的。在WinXP+VS2003下,这个值是NULL。而在Ubuntu 7.10 + Linux 2.6.22 + GCC 4.1.3下,这个值是如果1,表示还有下一个虚函数表,如果值是0,表示是最后一个虚函数表。 (2).下面,我将分别说明“无覆盖”和“有覆盖”时的虚函数表的样子。没有覆盖父类的虚函数是毫无意义的。之所以要讲述没有覆盖的情况,主要目的是为了给一个对比。在比较之下,我们可以更加清楚地知道其内部的具体实现。 a.一般继承(无虚函数覆盖) 下面,再让我们来看看继承时的虚函数表是什么样的。假设有如下所示的一个继承关系: 请注意,在这个继承关系中,子类没有重载(重写)任何父类的函数。那么,在派生类的实例中,其虚函数表如下所示: 对于实例:Derive d; 的虚函数表如下: 我们可以看到下面几点: 1)虚函数按照其声明顺序放于表中。 2)父类的虚函数在子类的虚函数前面。 b.一般继承(有虚函数覆盖) 覆盖父类的虚函数是很显然的事情,不然,虚函数就变得毫无意义。下面,我们来看一下,如果子类中有虚函数重载了父类的虚函数,会是一个什么样子?假设,有下面这样的一个继承关系。

为了让大家看到被继承过后的效果,在这个类的设计中,我只覆盖了父类的一个函数:f()。那么,对于派生类的实例,其虚函数表会是下面的一个样子:

我们从表中可以看到下面几点, 1)覆盖的f()函数被放到了虚表中原来父类虚函数的位置。 2)没有被覆盖的函数依旧存在。 这样,我们就可以看到对于下面这样的程序,

Base *b = new Derive();

b->f();

由b所指的内存中的虚函数表的f()的位置已经被Derive::f()函数地址所取代,于是在实际调用发生时,是Derive::f()被调用了。这就实现了多态。 2.多重继承(无虚函数覆盖) 下面,再让我们来看看多重继承中的情况,假设有下面这样一个类的继承关系。注意:子类并没有覆盖父类的函数。

对于子类实例中的虚函数表,是下面这个样子:

我们可以看到: 1) 每个父类都有自己的虚表。 2) 子类的成员函数被放到了第一个父类的表中。(所谓的第一个父类是按照声明顺序来判断的) 这样做就是为了解决不同的父类类型的指针指向同一个子类实例,而能够调用到实际的函数。 3.多重继承(有虚函数覆盖) 下面我们再来看看,如果发生虚函数覆盖的情况。 下图中,我们在子类中覆盖了父类的f()函数。

下面是对于子类实例中的虚函数表的图:

我们可以看见,三个父类虚函数表中的f()的位置被替换成了子类的函数指针。这样,我们就可以任一静态类型的父类来指向子类,并调用子类的f()了。如:

Derive d;

Base1 *b1 = &d;

Base2 *b2 = &d;

Base3 *b3 = &d;

b1->f(); //Derive::f()

b2->f(); //Derive::f()

b3->f(); //Derive::f()

b1->g(); //Base1::g()

b2->g(); //Base2::g()

b3->g(); //Base3::g()

C++这门语言是一门Magic的语言,对于程序员来说,我们似乎永远摸不清楚这门语言背着我们在干了什么。需要熟悉这门语言,我们就必需要了解C++里面的那些东西,需要去了解C++中那些危险的东西。不然,这是一种搬起石头砸自己脚的编程语言。

继承和多态需要掌握的知识点: 继承过程中的访问属性 继承过程中的父类、对象成员、子类的构造以及析构顺序 继承过程中的函数同名隐藏 多继承中容易产生二义性,可以用::进行解决,如果是从同一个基类进行继承,那么要考虑是否是有虚拟继承,即虚基类 类型兼容原则的类容 多态的实现必然以父类的指针或引用作为基础,如果以父类的对象进行调动,会出现子对象的切片现象 掌握多态的实现原理(虚指针、虚表),以及各种继承情况下的虚表图

参考:

[1] https://blog.csdn.net/derkampf/article/details/62046205

相关推荐

汽车报警器如何安装?
bat365在线登录入口

汽车报警器如何安装?

📅 07-01 👁️ 3245
舞蹈游戏推荐
bat365在线登录入口

舞蹈游戏推荐

📅 06-30 👁️ 7178
dnf二觉宠物怎么选?平民玩家看这篇就够了!
365bet游戏网站

dnf二觉宠物怎么选?平民玩家看这篇就够了!

📅 07-15 👁️ 7335
【2025年全新教程】CorelDRAW 2021下载安装超详细保姆级教程(附安装包)
小时候的手机游戏有哪些 2025好玩的童年手游汇总
365bet游戏网站

小时候的手机游戏有哪些 2025好玩的童年手游汇总

📅 07-15 👁️ 8775
奥迪A4L后排空间大值得买吗_奥迪A4L空间怎么样
365bet投注网站

奥迪A4L后排空间大值得买吗_奥迪A4L空间怎么样

📅 07-06 👁️ 8163